MINGXIN YU

https://mingxiny.github.io/ \diamond yumx35@mit.edu MIT Building 31, 70 Vassar St, Cambridge, MA 02139, USA

RESEARCH INTEREST

Planning and safe control for robotic manipulation, especially combined with machine learning.

EDUCATION

Massachusetts Institute of Technology, Cambridge, MA, USASept. 2022 - CurrentPh.D. student at Department of Aeronautics and Astronautics.Advisor: Prof. Chuchu Fan

Peking University, Beijing, China *B.S. in School of Physics.*

Sept. 2017 - July 2022

PUBLICATIONS & MANUSCRIPTS

Mingxin Yu, Chuchu Fan. Rigid Body Path Planning Using Mixed-Integer Linear Programming. *IEEE Robotics and Automation Letters (RA-L)*, 2024.

Mingxin Yu, Chenning Yu, Mahdi Naddaf, Devesh Upadhyay, Sicun Gao, Chuchu Fan. Efficient Motion Planning for Manipulators with Control Barrier Function-Induced Neural Controller. *IEEE International Conference on Robotics and Automation (ICRA)*, 2024.

Bingchen Zhao, Shaozuo Yu, Wufei Ma, **Mingxin Yu**, Shenxiao Mei, Angtian Wang, Ju He, Alan Yuille, Adam Kortylewski. ROBIN: A Benchmark for Robustness to Individual Nuisances in Real-World Out-of-Distribution Shifts. 17th European Conf. on Computer Vision (ECCV), 2022. (Oral)

Mingxin Yu^{*}, Lin Shao^{*}, Zhehuan Chen, Tianhao Wu, Qingnan Fan, Kaichun Mo, Hao Dong. RoboAssembly: Learning Generalizable Furniture Assembly Policy in a Novel Multi-robot Contactrich Simulation Environment. *arXiv preprint arXiv:* 2112.10143, 2021.

RESEARCH EXPERIENCE

Research Assistant, Massachusetts Institute of Technology, Cambridge, MA, USA Sep. 2022 - Now Advisor: Prof. Chuchu Fan

- Safe learning-based planning algorithms for multi-DoF manipulators.
- Optimization-based geometric motion planning.
- Compositional diffusion policy for manipulation.

Research Intern (remote), Johns Hopkins University, Baltimore, MD, USA July. 2021 - Dec. 2021 Mentor: Prof. Alan L. Yuille and Dr. Adam Kortylewski

• Proposed an adaptive generative 3D model of neural feature activations which can combine classification with 3D pose estimation via differentiable rendering and minimizing reconstruction error.

Research Intern, Peking University, China

Mentor: Dr. Lin Shao (Stanford) and Prof. Hao Dong

- Adjusted and annotated a set of furniture in PartNet dataset to meet physical constraints.
- Proposed an algorithm to assemble a diverse set of chairs under physical constraints

Research Intern, Peking University, China

Mentor: Prof. Zhi Qi, Center for Quantitative Biology

• Verified traditional mechanisms insufficient to explain the low time consumption for P53 to find target gene through theoretical computation and simulation.

Sept. 2019 - Nov. 2019

Apr. 2020 - Sep. 2021

Research Intern, Peking University, China

Mentor: Prof. Chao Tang, Dr. Shanshan Qin, Center for Quantitative Biology

- Designed 3D model of experimental setup with SolidWorks to apply monochromatic stimulus and restrict drosophila movement to 1-dimension.
- Implemented automatic video analysis program with Matlab.

Contest Participant,

Jan. 2018 - Aug. 2018

China Undergraduate Physics Tournament (CUPT)

• Using Plateau-Rayleigh instability theoretically predicted and experimentally tested the existence of a universal constant in bubble formation.

PRIZES & AWARDS

Mathworks Fellowship	June 2023
Peking University Scholarship, Peking University	Sept. 2019
Outstanding Scientific Research Award, Peking University	Sept. 2019
Outstanding Physics Student Scholarship, School of Physics, Peking University	Sept. 2019
Jinhui Scholarship, School of Physics, Peking University	Sept. 2018
National First Prize, China Undergraduate Physics Tournament (CUPT)	Aug. 2018
Gold Medal, Chinese Physics Olympiad (CPhO)	Nov. 2016

SERVICE

Reviewer for: IROS 2024, ICRA 2024, RA-L, NFM 2023, TACAS 2023.

TECHNICAL SKILLS

- Programming Languages: Python (proficient), C++, Matlab
- **Platform:** PyTorch (proficient)
- Language: Chinese (native), English (Proficient)